jump to navigation

Reactive Arthritis and the Chronic Lyme Disease Debate: Dissecting the Research 11/20/2012

Posted by thetickthatbitme in Diagnosis, Peer-Reviewed, Tick-Lit, Treatment.
Tags: , , , , , , , , , , , , , , ,
7 comments

As you may be aware, there is a great deal of controversy about persistence of Lyme disease symptoms after treatment—even when treatment involves long-term antibiotics. There are many theories about this, and several of them may be true, depending on the patient. The Centers for Disease Control (CDC) and the Infectious Diseases Society of America (IDSA) say that once you’ve been treated with a month of antibiotics, you no longer have a Borrelia burgdorferi infection. If you’re still experiencing symptoms, they call it Post-Lyme or antibiotic-refractory arthritis. At the other end of the spectrum, some Lyme-literate medical doctors (LLMDs) believe that Lyme is a chronic disease, and once you have it, you’ll have it for life. Long-term (read: indefinite) antibiotic treatment, they maintain, is necessary to keep the organisms from multiplying, but you’ll never fully be rid of them.

My views fall somewhere between these two extremes. (Disclaimer: I am not a medical professional.) On the one hand, I don’t think that four weeks of antibiotics, whether oral or intravenous, is really enough to kill off a Borrelia infection in a patient who’s been infected for years. (And this view is supported by Embers et al’s study of Rhesus macaques.) On the other hand, I don’t think that antibiotics-for-life is the answer either. There are just too many people who have been on antibiotics for years who don’t seem to be getting better. Plus there’s the fact that antibiotics can cause a lot of damage if you take them long-term, which significantly lowers the quality of life for people on these treatment regimens.

So when patients have been treated and they’re still experiencing symptoms, I see several possible explanations:

1) The antibiotics didn’t kill off all the bacteria, and they are still hanging around somewhere—perhaps hidden in joints, cartilage, or the brain. This, as you can imagine, is very difficult to prove, especially in living human beings.

2) The antibiotics killed off all the bacteria, but the patient was bitten by another tick and re-infected. This is highly possible if the patient’s environment, lifestyle, and preventive measures have not changed. It’s also difficult to detect when patients are only being follow-up tested with Western Blots, and not something like the C6 antibody assay, which gives you a titer so you can see if your antibodies to the bacteria suddenly increase. (A study related to reinfection was just published on Wednesday in the New England Journal of Medicine. You can read about it in the NY Times here, or read the study abstract. I’ll be doing a run-down of that study next week.)

3) The antibiotics killed off the bacteria, but the body is still making an immune response, possibly attacking its own cells, causing inflammation and continuing symptoms.

When new research comes out, I like to pay attention to see which of these explanations is supported and why. In this post, I’ll take you through a study called “Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy” that was conducted by some researchers at Yale and published in the Journal of Clinical Investigation back in June. (If you want to read along, you can access the full article here.)

Some Background:

The underlying question in this study is: what causes Lyme-associated arthritis in patients who have been treated with antibiotics? Is it that infectious spirochetes are still hiding somewhere in the body, or is it possible that antibiotics “kill” all the bacteria (read: disassemble them so they can’t multiply) but leave their building blocks (referred to as antigens because the body still detects them) behind, causing inflammation.

Let me explain how killing Borrelia in the human body works. The things you need to kill Borrelia are antibodies, first and foremost. If you don’t generate an IgM response, this infection can be fatal in the first 3 to 7 days. We know that IgM has a direct bactericidal effect. In other words, this antibody can kill Borrelia on its own in the absence of complement. IgG, by comparison, is very inefficient at killing Borrelia, but we make that, too. We also need phagocytes to kill Borrelia, and in order to generate antibodies, we need B cells that work. Another thing we need is toll-like receptors (TLRs). These are important for helping antibodies bind to pathogens or parts of pathogens. If we’re deficient in TLR2, or a certain molecule in TLR called myeloid differentiation antigen 88 (abbreviated MyD88), we can have an overwhelming infection.

What they did:

In this study, the researchers used a type of mouse in which this MyD88 protein has been knocked out—i.e. the mouse is totally deficient in MyD88. For that reason, they call it a Myd88-/- mouse. (No, that thing at the end is not an emoticon.) The problem with these mice is that they die quickly of opportunistic infection (specifically, Pneumocystis carinii), so in the lab, they have to give them an antibiotic called Sulfatrim or Septra, which is actually a combination of two antibiotics—sulfamethoxazole and trimethoprim. I’ll come back to why this is important a little later.

lab mouse

Sorry, little guy. (Image via jaxmice.jax.org)

Now, an interesting thing is that this same group of researchers did a study back in 2002 using C3H mice, who don’t have the Myd88 protein knocked out—so essentially “normal” mice, in terms of their immune systems—and they showed that live Borrelia persist for 3 months after optimal treatment. These Borrelia that remained were sort of mutant Borrelia because they were missing a couple of proteins that they might need to infect other animals. The researchers knew this because the clean ticks that bit them got B. burgdorferi, but when they had those ticks bite healthy mice, those mice didn’t get infected.

Anyway, for some reason, these researchers didn’t want to use the C3H mice for this study, and they decided to use the Myd88-/- mice, who develop overwhelming infections. They also used a WT strain of mouse (which is not missing Myd88) for the sake of comparison. They infected both types of mice, and then they treated some of them with Doxycycline (through their water supply) and others with Ceftriaxone (via subcutaneous injection). Interestingly, they showed that after one day of Ceftriaxone therapy, they could kill all of the Borrelia. They also used an interesting microscopic technique which allows one to look real-time at tissue and watch an organism to see what it does. By cutting down to a mouse’s tendon, they can see what’s going on down there.

Their Findings:

“B. burgdorferi DNA can be detected in B6 Myd88-/-, but not WT, mice after treatment with Doxycycline” (p. 2).

Translation: After treating the mice with Doxycycline, the researchers couldn’t find any B. burgdorferi DNA in the normal immune system mice, but they could find the DNA in the immune-compromised mice. One of those mice had a positive culture for B. burgdorferi, and ticks that fed on that mouse also tested positive for B. burgdorferi. HOWEVER, when they took samples from the knee joints of the mice, ALL of the mice tested positive for the ospA plasmid (B. burgdorferi DNA). In addition, ear-skin samples from half the immune-compromised mice and one of the normal mice tested positive for B. burgdorferi DNA (p. 2).

“Real-time imaging of B. burgdorferi in Myd88-/- mice reveals rapid spirochete elimination after antibiotic therapy” (p. 2).

Translation: The researchers used intravital 2-photon microscopy to observe the behavior of the B. burgdorferi spirochetes in the infected mice. Specifically, they looked at the dermis (skin) and the calcaneal (achilles) tendons. They say that 24 hours after beginning treatment with Ceftriaxone, the number of spirochetes had “diminished dramatically” in both the skin and tendons. The spirochetes left behind in the skin appeared to be moving, but the ones in the tendons did not. The following day, they were not able to see any spirochetes using this imaging technique, suggesting that they had all been destroyed.

“Spirochete antigens can be detected adjacent to ear cartilage in antibiotic treated Myd88-/- mice” (p. 3).

Translation: At the end of the study, the researchers took tissue samples from the ears of all the mice. They tested these samples for B. burgdorferi using both immunofluorescence staining (looking for antibodies) and culture techniques. The mice who were “sham treated” (not given antibiotics) tested positive. The mice who were treated with Ceftriaxone had negative cultures, but some “spirochete antigens” were detected in a deep layer of skin next to the ear cartilage. By “spirochete antigens,” they mean not live spirochetes but proteins (building blocks) left over from the bacteria that can cause the immune system to react. These antigens were found at a deeper level than where the imaging had earlier been peformed (which explains why they weren’t detected using imaging). The same antigens were detected in ear tissue from mice treated with Doxycycline. The researchers conclude that because the antigens were detected, but the bacteria could not be cultured (grown), it means whatever these spirochete remains were, they were incapable of multiplying because they had been too damaged by the antibiotics.

“Live imaging reveals antigen deposits but not motile spirochetes adjacent to cartilage of Myd88-/- mice after Doxycycline treatment for B. burgdorferi infection” (p. 3).

Translation: A separate experiment was conducted in which researchers studied mice between 2 and 10 weeks after finishing a 1 month course of Doxycycline. They used a technique called xenodiagnosis, where they let clean ticks bite the mice. They could find some B. burgdorferi DNA in the ticks that fed on the mice treated with Doxycycline, but when they studied the contents of the ticks’ guts, they could not find any spirochetes. By contrast, the ticks that fed on mice not treated with antibiotics had the bacteria in their bellies. In addition to using xenodiagnosis, they did the immunofluorescence test and cultures on this group of mice, and as before the cultures were negative and the immunofluorescence found antigens near the ear cartilage. This time, they used their imaging technique to look deeper under the skin, closer to the ear cartilage. In the sham treated mice, they found that there were motile (alive) spirochetes right next to the cartilage and large “deposits of nonmotile fluorescent material” where the skin meets the cartilage. In the antibiotic-treated mice, they saw no live spirochetes, but the same deposits were present next to the cartilage. So to see if these deposits would cause infection, the researchers transplanted skin from the infected mice (both those treated with Doxycycline and the sham-treated ones) into non-infected mice. Only the skin from sham-treated mice caused infection in the new mice. This shows that the antigens adjacent to ear cartilage in the mice treated with Doxycycline were not infectious.

“Spirochete antigens can be detected in joints of antibiotic-treated C3H Myd88-/- mice” (p. 4).

Translation: Here, the researchers decided to look at the knee joints of the mice to see if the same antigen deposits exist in antibiotic-treated mice. They looked at the knees of mice that had been infected for 4 months (which is a long time considering mice only live for about a year). When they treated these mice with Ceftriaxone, intravital microscopy showed that the spirochetes died off, but debris was left behind. They are pretty sure the spirochetes died off because the cultures were negative.

“Tissues from antibiotic-treated mice contain immunogenic and inflammatory B. burgdorferi antigens” (p. 4).

Translation: Finally, they wanted to test whether the deposits left behind in the knees of the mice actually contained B. burgdorferi antigens. They did this by immunizing new mice with knee tissue from the infected mice. They found that both the tissue from sham-treated and antibiotic-treated mice caused an IgG immune response to several B. burgdorferi proteins in the new mice.

Problems with the study:

1. It’s in mice. If you follow the research on B. burgdorferi, you’ll see that many of the studies are done in mice. That’s because it’s much less expensive to study disease in mice than in other animals. However, if we really want to learn about arthritis and B. burgdorferi in the human body, it would be better to do a study like this in Rhesus monkeys, which are much more similar to humans. Hopefully, this study will make it possible for some researchers to try to replicate this work in a primate model so that we can learn more.

2. The use of a “lab” strain of B. burgdorferi. They used a 297 strain of Borrelia burgdorferi which is “stable”–in other words, it’s not changing. It’s old and predictable. The problem is that most Borrelia in the wild are likely mutating and changing. They could even be developing resistance to antibiotics. After all, these organisms have been around for thousands of years; they are masters of adaptation. It would be much more interesting to do a study like this using a “wild” strain of B. burgdorferi, as this would more closely mimic the average patient’s experience.

3. The ambiguous blot analysis. The researchers used their own immunoblot to look at the antigens in the patellas (knees) of the mice. It’s not clear to me why they didn’t just use a Western Blot (since that’s the test used on us humans). Another odd thing they did was use a dilution of 1:1,000 for the blot, which is ten times the dilution used for other blots. Perhaps a lower dilution showed too many similarities between the sham group and the antibiotic group? In any case, for a study like this, I would expect more justification for these unusual choices.

4. The study’s “lack of heart” (and brain). I’m referring to the fact that the researchers failed to examine the effect of B. burgdorferi in the hearts of the mice. We know that, in addition to knee problems, patients with B. burgdorferi infections are at risk for a variety of heart problems, including myocarditis. The researchers were so bent on showing that antibiotics could kill the bacteria near joints, but what does that matter if the heart is still infected? If they truly believe that 24 hours of Ceftriaxone in mice eliminates B. burgdorferi, they missed a golden opportunity to show it by neglecting to examine the hearts–and the brains, for that matter. Not only did they ignore the heart, but they wasted valuable word space in their discussion section attacking the research design of Embers et al’s 2012 study of B. burgdorferi infection in Rhesus macaques. Now, the infamous monkey study is far from perfect, but they did do one thing right, which was to look at the heart tissue of the monkeys post-mortem–and guess what they found? In 3 out of 12 monkeys who were treated with antibiotics (that’s 25%), B. burgdorferi RNA could be detected in the heart. That’s despite the fact that in all 12 of the treated animals, C6 antibody titers decreased steadily over the course of treatment.

5. The use of septra/Sulfatrim. This one is a doozy. Earlier, I mentioned that the researchers added the antibiotic sulfamethoxazole-trimethoprim (Sulfatrim) to the mice’s drinking water “to reduce opportunistic infection”(p. 7). They claim that this drug has “no effect on B. burgdorferi infection or disease”(p. 7). I’m guessing they think that because of this 1996 study done in Austria. In that study, several species of Borrelia were evaluated to see whether they were susceptible to amoxicillin, azithromycin, cefotaxime, ceftriaxone, doxycycline, penicillin G sodium, roxithromycin, and trimethoprim-sulfamethoxazole (Sulfatrim) in vitro. The researchers used 30 different strains of Borrelia, but only 4 of those were Borrelia burgdorferi, and they were European B. burgdorferi at that. They found that B. burgdorferi was resistant to trimethoprim-sulfamethoxazole. Now, even though both ceftriaxone and trimethoprim-sulfamethoxazole were studied, the Austrian researchers didn’t investigate what would happen if you used both of these drugs on the Borrelia at the same time (which is what was done in the Yale study). In fact, after scouring PubMed, I was unable to find any synergistic Borrelia studies using ceftriaxone and trimethoprim-sulfamethoxazole. I did, however, find this study, also from Austria, published in 1997. They found that “trimethoprim was more active against Borrelia burgdorferi than against a sensitive strain of Escherichia coli, but sulfamethoxazole was not active against Borrelia burgdorferi.” In other words, one of the drugs that makes up Sulfatrim kills Borrelia, and the other doesn’t. The question is, if you add Ceftriaxone, does Sulfatrim start killing the Borrelia? To actually know whether or not Sulfatrim has an effect on B. burgdorferi when combined with Ceftriaxone, our Yale researchers would have had to do a synergy study, to see what would happen if you took the 50% kill rate of Doxycycline and Ceftriaxone, and add Sulfatrim. But they didn’t show that adding Sulfatrim didn’t affect the kill. So when they’re saying that “Ceftriaxone rapidly [within 24 hours] reduces pathogen burden in the skin,”(p. 5) they’re not taking into account that the Sulfatrim in the drinking water is also probably helping kill off spirochetes. It’s ironic how critical they are of other studies when their own study isn’t exactly “clean.”

Doxycycline

Doxycycline (Image via en.wikipedia.org)

6. The way Doxycycline was administered. Doxycycline was given to the mice in their drinking water. This means that the amount of Doxycycline in each mouse’s system depended on how much water it drank. The researchers said their reason for doing the Doxy in the water instead of force-feeding it to the mice twice a day was that when it was given twice daily, serum drug levels fell too low and they were not able to kill all the bacteria (p. 5). When I read this, I thought to myself, “Well, let’s see, how many humans do I know who are taking their Doxycycline through their drinking water? Oh, that’s right. None.” So here we have a study of Borrelia burgdorferi infection in mice in which the researchers choose not to give oral antibiotics because they believe not that the drug doesn’t work, but that the drug delivery system doesn’t work because it can’t get a high enough level of the drug into the blood stream. Yet, these are the same doctors who are saying that one month of oral Doxycycline should be enough to treat the same infection in humans. Curious, isn’t it? They even admit that one mouse may have stayed sick “due to a drinking pattern that led to inconsistent Doxycycline levels” (p. 5). So I guess either that mouse just wasn’t as thirsty as all the other mice, or he was eating his food and drinking his water in one sitting, and the food interfered with the drug absorption (as it can in people!).

fat mouse diet coke

(via valdo.com)

7. They didn’t treat the arthritis. Okay, I get that the researchers were having lots of fun with their innovative real-time imaging technique. They tried to accomplish a lot with this study, and it already appears that they may have spread themselves a little thin. However, it bothers me that they spent no time examining ways to treat the arthritis caused by the deposits left behind by B. burgdorferi. In the world outside the laboratory, it doesn’t so much matter to people whether their arthritis is caused by live spirochetes or dead ones. They want to know what’s going to make them feel better. The study’s authors suggest that more antibiotics likely won’t work, but they don’t explore any alternatives, like steroids, for treating Lyme arthritis.

Some interesting (and some unexpected) implications:

1. Cool pictures. Intravital microscopy, the real-time imaging technology used in this study, is pretty nifty, and could be used in better-designed studies to find out a lot of useful information. The researchers in this study could even see some of the spirochetes changing into spherical forms, but they didn’t really investigate or discuss this in detail, beyond saying they don’t think those forms are bacterial cysts. It might be useful to have an entire study dedicated to investigating that.

Borrelia burgdorferi intravital microscopy sphere

Image sequences of Bb914 (Borrelia burgdorferi) changing from an elongated spirochete to a spherical form. (Image via ncbi.nlm.nih.gov; J Clin Invest. 2012 July 2; 122(7): 2652–2660.)

2. Rethinking oral Doxycycline. It’s been my belief for a while now that oral antibiotics are just not as effective at killing Borrelia as IV antibiotics like Ceftriaxone. I’m not expecting everyone to agree with me on this, but let me tell you why I think so. While Doxycycline is by far the best choice among oral antibiotics for killing Borrelia (as it’s better at crossing the blood-brain barrier than many other drugs), there is an inherent disadvantage to all oral drugs because they have to be delivered through our digestive system. As a patient who took Doxy for a month, I can tell you that no matter how responsible and organized you are, it is very difficult to eat meals at the same time every day, to space the doses 12 hours apart, and to avoid ingesting things like milk that interfere with drug absorption. Reading Bockenstedt et al’s article made me further question the effectiveness of oral Doxy, as the researchers decided that oral Doxy twice per day would not be enough to keep serum drug levels consistent. Instead, they opted to deliver the drug through the mice’s water supply, which poses other problems with consistency. In any case, if it’s not good enough for lab mice, I don’t see how it’s good enough for humans.

3. A new drug combo? The study shows that in the presence of trimethoprim, you can rapidly kill Borrelia with Ceftriaxone. That means we should be doing more studies on how this works and whether it is safe for humans. There is always concern with killing off bacteria too rapidly because macrophages need time to clear the debris (which we think causes arthritis). However, this drug combination seems worth examining in other laboratory studies.

4. Location, location, location. The study doesn’t show that cartilage can be infected with Borrelia burgdorferi, but it does show that deposits are left over near cartilage after the bacteria have been disassembled by antibiotics. If the infection is in cartilage, that’s bad news, because there is no blood flow to cartilage, so it’s very difficult to eradicate an infection there. We need more studies that examine how this bacterium acts around cartilage.

5. Chronic Lyme? Contrary to what Yale alum and journalist Carole Bass would have you believe (Thanks to Becki from Bloody Lymey for opening my eyes to that one.), this study neither proves nor disproves the existence of Chronic Lyme disease, so despite the agenda that may underlie this study, patients need not see it as a threat. The study authors themselves admit in their Discussion section that they’re not quite sure what all their data mean: “The significance of B. burgdorferi DNA in xenodiagnostic ticks and in mouse tissues after antibiotic therapy is unclear” (p. 5). One possibility is that “Some B. burgdorferi DNA could remain intact if it is sequestered in cellular debris such as the GFP deposits.” They’re saying they think that the B. burgdorferi DNA they detected is just remnants of dead spirochetes that were preserved because they were stuck in the debris left behind by the antibiotics. However, they also admit to another possibility: “Alternatively, spirochete DNA could represent a minor subpopulation of B. burgdorferi that is not killed by the antibiotic treatment.” It’s a one-sentence admission in a 9-page paper, but it’s there–and it means that despite what these researchers think is going on, they still can’t say with 100% certainty that the antibiotics completely eradicated the infection.

What the study does show is that there are deposits in mouse tissue that the researchers insinuate are dead organisms (they have Borrelia antigens, are immunogenic, and don’t appear to be infectious). Because they don’t examine all of the tissue–including the cartilage, the heart, and the brain–it’s difficult to say whether they have completely eliminated the bacteria with antibiotics. What Embers et al showed in their primate model is that there seems to be persistence of spirochetes following 4 weeks of IV Ceftriaxone treatment and 8 weeks of Doxycycline. Until somebody does another study in Rhesus monkeys and proves that they’re wrong, that study stands.

6. Treating the arthritis. We know that reactive arthritis caused by Borrelia infections is a real phenomenon, and this study suggests that the cause is the debris left behind by spirochetes following antibiotic treatment. However, what patients and doctors alike need is access to information about how best to treat this unique form of arthritis. I’ve heard anecdotes from patients and doctors about the helpfulness of steroids like prednisone during or following antibiotic treatment, but there really isn’t enough research being done on this. It would be nice if researchers on both sides of the Chronic Lyme debate would pool their resources for the sake of better patient care.

I hope you enjoyed this installment of Tick-Lit Tuesday. It’s good to be back.

What has been your experience with Lyme or Tick-borne Relapsing Fever and reactive arthritis? What questions would you like to see addressed in future research?

What a difference a year makes! 07/14/2012

Posted by thetickthatbitme in Patient Stories, Treatment.
Tags: , , , , , , , , , , , , ,
2 comments

A year ago yesterday was when I started my treatment for Borrelia hermsii. I left my home, my boyfriend, and my dog to stay with my parents so I could get treated with 42 days of IV antibiotics. Looking back on this time last year, so much has changed:

1. My knowledge level. I’m embarrassed to say that when I started treatment, I couldn’t even tell you if a tick has eight legs or six. (I never saw the ticks that bit me.) I knew nothing about the habitat or biology of ticks, and I didn’t know how many different diseases they can spread. I didn’t know how to spell Borrelia. Pretty much all I knew was that I was infected with a bacterium that was like Lyme but not Lyme that causes Relapsing Fever. This was strange to me because I never remembered having a fever–cold sweats, yes, but no measurable fever. I’d had IVs in my hand before when I’d been hospitalized, but I didn’t really understand what an infusion was, or that it mattered which vein a needle goes in. I had no idea what PubMed is. I’d read maybe three medical journal articles in my lifetime. Over those six weeks, I learned a lot from my doctor and other patients, and I kept learning through support group meetings and emails. Finally, I got up the energy and courage to launch this blog, and well…you know the rest.

2. My energy level. The fall of 2011 was when I should have realized something was wrong. I was student teaching in the mornings and teaching my regular classes at night. I remember what a struggle it was to get out of bed in the morning. Getting dressed was like running a marathon. I’d had back surgery the previous June, and I was in this hard brace that everyone called my turtle shell. But it wasn’t just my back that was a problem. Even with eight to ten hours sleep, by noon, I was struggling to stay awake. My 30 minute drive home on the freeway was terrifying. The only thing that kept my eyes open most days was if I was constantly chewing something, so I tried to always have snacks with me. When I got home, I’d take a 90 minute nap–which was never enough–and then I’d get up and go to work again. When the semester ended, I thought I would catch up on rest, but even only working part-time, I was constantly fatigued. I spent any time that I wasn’t working in bed. When I had to go on a business trip in March, I freaked out. How would I handle being on someone else’s schedule? How would I go six or seven hours without lying down? By June, I was freed from back braces, and my spine had healed, but I still felt awful. And I felt guilty. How had I become this lazy, unmotivated person who spends all her time in bed? A year later, I have my life back. I work two jobs, plus freelance work. I cook dinner for Boyfriend and me several nights a week, do all the grocery shopping, and keep the house clean. I walk my dog and ride my bike. I go shopping and to the movies with friends, drive long distances, and even occasionally babysit. Before, I only had the energy to do one or two of these things per day. I was a spoonie with a very low spoon limit. If I cleaned the house, that was it for the day. If I went to the store, I probably wouldn’t have the energy to cook the food I’d bought. If I taught a 3 hour class, I would come home and sleep the rest of the day. All of this I tried to conceal from my family and friends. I tried to be fine because there was no explanation for why I wasn’t.

spoon chasing

Spoon chasing. (Image via unfocusedcreativity.blogspot.com)

Looking at how much better I am now makes me realize how sick I was. Yesterday, I had a two-hour morning conference call, after which I worked on the computer for another hour. Then I ate lunch and went to the grocery store. When I got back, I cleaned out the fridge, put the groceries away, and then did a thorough de-clutter and clean of the entire house. I read a chapter in my book, took a shower, and went out to dinner with Boyfriend. All that activity would never have fit into one day when I was sick. I was up again this morning at 8:00, feeling rested.

Weather-style pain scale.

Weather-style pain scale. (Image via fibroofoz.blogspot.com)

3. My pain level. I was on strong prescription painkillers for a year and a half, starting in June 2010 after my surgery. Clearly, I didn’t get off them when I was supposed to, 6-9 months post-surgery. That’s because I didn’t just have back pain. It was in my hips, neck, and shoulders, too. The pain didn’t completely go away right after treatment. It’s been a slow progression. In the fall, I was able to wean myself off painkillers and just use heating pads when my back or joints bothered me. We know from the research that reactive arthritis may simply be part of the package for some patients with treated Borrelia infections. This is my framework for understanding some of my continuing aches and pains. For me, low-impact exercise, comfortable shoes, heating pads, and a memory foam mattress pad help a great deal. Whereas before my daily pain level rarely dropped below a four, even with drugs, now I’m at a one or a two most days, and I’m drug-free, aside from very rarely taking Advil.

What brain fog does to reading a book.

What brain fog does to reading a book. (Image via a-b-martin.blogspot.com)

4. My cognitive level. The ability to think, speak, and write clearly is essential to my livelihood. Having a Borrelia infection plunged me into what many people describe as a “brain fog.” For more than a year, I was sort of drifting through life, not able to think very clearly about anything. It came on gradually, and after my surgery, it got worse, which I attributed to the pain and the painkillers. Now I’ve met enough fellow patients that I see the pattern. I understand how this infection clouded my cognition. One of the reasons I didn’t start writing this blog while I was getting treated was that I couldn’t focus well enough. Even post-treatment, it took me a few months to start feeling sharp again. I really noticed the change this past semester when teaching got easier. I was able to learn the names of all my students within the first three weeks–which hadn’t happened the previous four semesters. My focus and mental endurance were so much better, as was my time management during class. I felt sort of like I’d woken up from a long sleep. The time in my life when I was very sick seems blurry. Now, not only do I have the energy to do more, but I have much better concentration. I can even go back and look at things I wrote two years ago and see the difference in sentence structure. All I can say is it’s good to be “back.”

What I’m doing to stay well, one year out:

egg

(Image via Wikipedia. Credit: Ren West)

1. Eating my eggs. You wouldn’t believe how “off” I feel if I go a day without an egg. That’s probably because my neurologically-damaged body likes choline, and eggs are full of it. I also find myself craving green vegetables. In fact, whenever friends ask me where I want to eat, I usually say, “Anywhere with good veggies.” I know there are many diets out there that are designed to help people with Borrelia infections avoid inflammation and other problems, and many of those recommend avoiding meat, dairy, gluten, and sugar. Personally, I’m not really cut out for that. I’m not the kind of person who can say, “I’m not going to eat X” when X is something that I really like, like sourdough bread, or milk, or chocolate. That’s not to knock the vegetarian, dairy-free, gluten-free, and/or sugar-free diets. I recognize that they do work for some people. However, I’m pretty sure that my body needs both meat and sugar to function normally, so I’ve always been opposed to giving up those. Other than being lactose-intolerant, I have no problems with dairy, and I don’t have more pain when I drink my Lactaid milk than on days when I don’t, so I’m not so concerned with the inflammation factor there. I seem to tolerate gluten pretty well, but I do try to limit my grains, as they’re not the best source of choline. No one gets between me and my egg sandwiches, though.

2. Staying active. I spent a large percentage of a year in bed, and going back there is very tempting at times, especially since during that time I developed a large collection of movies and TV shows, and my bed is VERY comfortable. Because I used to do most things from bed, I’m just now getting used to LIVING in my living room, WORKING in the office, and SLEEPING in my bedroom. (In fact, I’m breaking this rule now, typing the first draft of this from bed, but it’s a Saturday, and I’ve been working all week, so I don’t feel bad.) For me, staying active means not only “working out” (by walking the dog, riding my bike, and playing Dance Central on Xbox) but “getting stuff done.” I used to put off doing things and tell myself, “I’ll do it when I’m not so tired, or when I’m in less pain.” Now I don’t have those excuses, and it’s much less burdensome to get things done right away. Procrastination used to be a form of self-preservation. Now it’s a habit I have to work to break.

3. Preventing re-infection. After what I’ve been through, the last thing I want is another tick-borne infection, so I make sure that both my dog and I stay out of high risk areas for ticks. When we walk, we stay on the sidewalk. Boyfriend and I keep the yard clean–which is not too difficult since our backyard is mostly concrete. We treat Lucy monthly for fleas and ticks, and I’m always spraying that Cedarcide. I’ve decided not to do any hiking or camping for a while. When I want to enjoy the outdoors, I ride my bike or go to the beach.

4. Staying current on my tests. I get my blood drawn every 3 months so my doctor can check my antibody titer. My doctor said if I have a four-fold rise, then we’ll need to consider re-treatment. So far, I’ve been okay, but I want to be vigilant. I don’t want to get re-infected and not know about it.

Hope everyone is having a wonderful weekend!

Major Misnomer: 8 things you need to know about Rocky Mountain spotted fever 06/05/2012

Posted by thetickthatbitme in Diagnosis, TBI Facts, Treatment.
Tags: , , , , , , , , , , , ,
3 comments

The fact sheet for Rocky Mountain spotted fever (Rickettsia) is up today. Here’s the cliff notes version:

1. You don’t have to be in the Rocky Mountains to catch RMSF. There are four types of ticks in the U.S. that can transmit this bacteria to you: the American dog tick (Dermacentor variabilis), Rocky Mountain wood tick (Dermacentor andersoni), brown dog tick (Rhipicephalus sanguineus), and the Cayenne tick (Amblyomma cajennense). Cases of RMSF have been reported all over the U.S., and there have also been some in Canada. In 2008, all but 8 states reported cases of RMSF to the CDC.

2. Rocky Mountain spotted fever can be a deadly disease if not treated promptly. The national fatality rate is about 3%, but this rate is much higher in certain states like Arizona, where the fatality rate is 10%. This is likely due to delayed diagnosis.

3. Patients infected with the Rickettsia rickettsii bacteria that causes RMSF may experience any combination of the following symptoms: chills, confusion, fever, headache, muscle pain, rash, diarrhea, light sensitivity, hallucinations, loss of appetite, nausea, thirst, and vomiting. Though 90% of patients develop the spotted rash, this often comes late in the illness, so if other symptoms are present, you shouldn’t wait to get treated. Ten percent of patients never develop the rash.

Rocky Mountain spotted fever rash

Example of an early-stage rash in an RMSF patient. (Image via CDC.gov)

4. RMSF can be diagnosed with a blood antibody test called an IFA (indirect immunofluorescence assay), but this test is often negative in the first week or so of infection. If you are showing symptoms of RMSF, your doctor shouldn’t wait for blood test results before putting you on antibiotics, because the longer treatment is delayed, the higher the risk of fatality.

5. RMSF is treated with Doxycycline in both adults and children. The usual course is between 7 and 14 days. The CDC recommends treating for at least 3 days after fever subsides.

6. Another way to get RMSF is by squashing ticks that you find on your dog (or anywhere else) with your bare fingers. When you squish a tick, the bacteria inside it can come out and enter your body through your skin. When checking your pets for ticks, always wear gloves, and use tweezers for tick removal.

7. Although very rare, it is possible to get RMSF from a blood transfusion. If you experience symptoms of RMSF following a transfusion, see your doctor right away.

8. The symptoms of RMSF can mimic those of other TBIDs, like Ehrlichiosis and Anaplasmosis. Luckily, all three of these are treated with Doxycycline.

If you want to read more about RMSF, check out the fact sheet, which is full of links to additional information.

A fellow patient shares her story 05/30/2012

Posted by thetickthatbitme in Diagnosis, Patient Stories, Treatment.
Tags: , , , , , , , , , , ,
2 comments

When I started this blog, one of my goals was to somehow extend the community and knowledge base of my support group to other patients out there in the ether. Up to now, I’ve been doing this by sharing research, either that was introduced to me by my doctor or members of the group or that I stumbled upon on my own, and by sharing my personal journey. A few weeks ago, a third way of accomplishing this goal occurred to me: to let the voices of other patients from the support group speak through this blog. Today’s post is my first attempt at that. Leigh is a member of my Borrelia hermsii patient support group who has generously agreed to share her hermsii story. If you have questions for her, feel free to leave them in the comments.

Leigh’s Story

gray whale

Gray whale. (Image via Wikipedia)

I moved to a beautiful coastal area and once I discovered that I could watch grey whales migrating south from the shoreline, I would hike out, sometimes, twice a day to see them.  I never saw the bug that bit me, but I had what I thought was a mosquito bite that developed a red ring around it about a week later.

A couple of days after the bite, I left for China where I spent much of the trip sick, which I attributed to the trip. I caught a cold with a fever, but then got somewhat better. Two days before we left for home, I had terrible stomach problems. The Chinese airports have fever detectors you have to walk through before you can board any plane. I loaded up on Advil, Tylenol and Pepto Bismol to get home. Still, all of my symptoms seemed explainable; travel, food poisoning, jet lag.

It was now week three and I at least knew that a rash around a bug bite wasn’t a good thing, but when I made an appointment with my dermatologist he wasn’t available for another three weeks. I didn’t know I needed to drop everything and run to any doctor, so I waited.  I kept getting alternately sick and better.  By the time I saw him I was having terrible headaches.  I was also losing concentration and feeling a bit “foggy.” The dermatologist immediately thought it was Lyme disease because of the red ring, and prescribed a very low dose of antibiotic. On the way to pick up the antibiotic, I drove off the road, hit a tree and wrecked my car.

After a little research, I found a local Lyme specialist who prescribed three antibiotics, Zithromax, Ceftin and Flagyl, each twice a day. After two months of this, it wasn’t working.  I had stomach problems. I was very weak, tired, I had terrible headaches and my neck hurt so bad I couldn’t hold my head up very long.  I couldn’t drive. I would sit at my computer unable to use programs I had been proficient at. I would repeat myself in conversations. I would make phone calls at odd hours, unaware of the time.  I couldn’t do simple math problems.  I couldn’t bear loud noises or bright light. I lost my sense of balance. I was rarely up or awake. I thought I was dying. I was neglecting my son and my husband, who insisted I look for another doctor.  I made appointments with four different doctors.  Luckily, the first was a neurologist who insisted I make an appointment with a specific infectious disease specialist in our area.

My appointment wasn’t for a week, but I realized I wouldn’t make it through the next week and he saw me the next morning. He was so off the wall and quirky that I had a friend of mine, who is a doctor, make sure he was a legitimate doctor!  He told me that if he could make me laugh, he could make me better. He retested me and though my initial tests had shown a slight positive for Lyme, this test showed a strong positive to Borrelia hermsii, which explained the weak cross reaction for Lyme, another Borrelia. All of the literature says Borrelia hermsii doesn’t exist at low altitudes, but I know what I know, and I was at sea level when I was bitten. I asked the doctor what made him even guess Borrelia hermsii? He said it wasn’t rocket science; Borrelia hermsii is more prevalent in the west, and Lyme in the east.

The doctor prescribed a treatment that I had read showed promise, intravenous Ceftriaxone for six weeks. At this time, I was introduced to another “Lyme” sufferer who tried to talk me out of seeing this doctor and wanted me to see her Lyme specialist. We decided to compare notes in six weeks to see who was doing better. At the end of my treatment, there was no comparison between us. I was much better and she soon became his patient.  She also had Borrelia hermsii, not Lyme.

I continued to be tested; my results have not gone down to a negative reading and may not ever.  It showed up again 6 months after the first treatment in the form of a four-fold rise in my titer, but at least I caught it before I had raging symptoms again. I was retreated with Ceftriaxone followed by Ertapenem.

It’s now been almost a year since the second treatment and I have my life back.  I feel focused. I’m working and doing things with my family. I’m planning a trip to Alaska with them this summer. I think the neck damage will always be with me, but even it’s better and at least manageable. I am eternally grateful to the miraculous chain of events that led me to this doctor and this treatment.

I was fortunate that I discovered a doctor who believes in Lyme disease and other tick borne infections. There are many doctors out there, along with uncooperative insurance companies, who doubt that Lyme and Borrelia infections even exist. Because of this there are many Borrelia infections that we currently don’t have tests for. I have encountered some skepticism in the medical field especially as I seek treatment for the physical damage that was caused by the infection. I believe that when you know something is wrong you have to be your own advocate. Only time will tell if I’m over this. At least I’ve quit running into trees!

Arthralgias, myalgias, and herx—oh my! (Symptom vocabulary for TBIDs) 05/22/2012

Posted by thetickthatbitme in TBI Facts, Tick-Lit, Treatment.
Tags: , , , , , , , , , , ,
add a comment
lions tigers bears oh my

Oh no, not a Borrelia infection!

This is part one in a multi-part series on vocabulary related to tick-borne infectious diseases (TBIDs). Today, we focus on symptoms. You can find all these terms and more on the Glossary page.

arthralgia: a fancy medical term for joint pain. The origin is Greek (arthro- = joint; -algos = pain). Arthralgias may be a symptom of injury, infection, illness, or an allergic reaction. They are a common symptom with TBIDs like Borrelia burgdorferi (Lyme Disease), Borrelia hermsii (TBRF), and Babesia.

myalgia: a fancy medical term for muscle aches. Myalgias can be a symptom of infection with Borrelia burgdorferi (Lyme Disease), Borrelia hermsii (TBRF), Babesia, Ehrlichia, Anaplasma phagocytophilum, Rocky Mountain Spotted Fever, Toxoplasmosis, Malaria, or Influenza. They can also be a symptom of inflammatory diseases like Multiple Sclerosis.

Bell’s palsy: This is a paralysis of the muscles in the face caused by damage to the seventh cranial nerve. It is often unilateral (only on one side), and it’s more commonly seen in patients with Borrelia burgdorferi. As you may know, one of the consequences of Borrelia infection is inflammation, and this inflammation can lead to loss of nerve function. You can read more about Bell’s palsy here. Patients with Borrelia infections may also have damage to the eighth cranial nerve (also known as the auditory vestibular nerve), which can result in tinnitus (ringing of the ears) and problems with balance.

pulse oximeter

A pulse oximeter measures pulse and oxygen. Image via Yale Medical Group.

postural tachycardia: Tachycardia is a heart rate that exceeds the normal range (usually indicated by a pulse greater than 100). Some people with infections have tachycardia all the time, but many only have postural tachycardia, which is tachycardia when you stand up for 3 minutes after lying down for 3 minutes. According to my doctor, this has been a great predictor of whether a patient has an infection, and he puts every new patient though the “tilt test”: lie down three minutes, have your vitals taken, stand up 3 minutes, have your vitals taken. Often, the difference in lying and standing pulse will decrease over the course of treatment.

herx: Herx is short for Herxheimer reaction (or Jarisch-Herxheimer reaction). It was named after dermatologists Adolf Jarisch and Karl Herxheimer in the late nineteenth century, who discovered it while treating Syphilis patients with mercury. (Fun fact: Herxheimer was a colleague of Paul Ehrlich, for whom Ehrlichia is named. They both helped found the University of Frankfurt. Not-so-fun fact: Herxheimer was murdered in 1942 by Nazis at Theresienstadt; he was 81.) A Herxheimer reaction can occur when one is being treated for an infection with antibiotics. It’s thought to be caused by the endotoxins that are released as bacteria start to die off. Herx are characterized by fever, chills, rigor (shaking), hypotension, headache, tachycardia, hyperventilation, vasodilation with flushing, myalgia (muscle pain), and exacerbation of skin lesions.

I’ve discovered a bit of an inconsistency when it comes to information available online and in published research about herx. Almost every Lyme patient blog I’ve ever read mentions herxing. I was herxing bad today, etc. Many patient and doctor organizations related to the treatment of Lyme Disease also discuss herxing. They characterize herxing as common among patients with Borrelia infections and as a sign that antibiotics are working. Herx seems to be used liberally as a term that means any sort of increased discomfort that a patient feels while undergoing antibiotic treatment.

For the sake of comparison, let me tell you how a medical textbook describes the Herxheimer reaction. I’m using as my reference Principles and Practices of Infectious Diseases, seventh edition (borrowed, not bought). I’ll start with the Herxheimer reaction as studied in patients with Borrelia hermsii (TBRF) infections. A herx in hermsii patients is characterized by severe rigors, increase in temperature, and decrease in blood pressure. The onset of reaction occurs within 2 hours of initial therapy and coincides with clearing of spirochetes from the blood. This means that in order to have the reaction you have to have spirochetes in the blood (which would be indicated by a positive blood smear). You’ll also notice that the reaction happens on the first day of treatment.

According to Principles and Practices, herx occur in 30-40% of patients with Borrelia hermsii infections. When a herx does occur, medical attention is necessary because there is a possibility of fatality. Aspirin is sometimes given to lower the fever. A saline infusion can be given to increase blood pressure. If the reaction is very severe, the patient may have to be given steroids. In sum, if you have an acute Borrelia hermsii infection and are treated with antibiotics, there is a chance that you will have a herx reaction the first day of treatment. If you are having a true herx, you will probably need immediate medical attention.

Now, you may remember that I had Borrelia hermsii, and upon reading the above information, I was really curious as to why I never experienced one of these reactions. When I asked my doctor about it, he explained that it was because I had a latent infection. In other words, I did not receive treatment until several years after I was infected. My body had already tried to fight off the bacteria, and had partially succeeded because my infection was no longer acute. This meant I did not have a high load of bacteria in my blood. So even though some days my joint and muscle pain worsened and I felt sick to my stomach, because I didn’t have the shaking, the fever, and the low blood pressure and because the bacteria was hiding in my joints, not in my blood, I never had a herx reaction. Dr. W went on to say that he has treated more than 50 people with B. hermsii infections, and he has never seen a herx in clinic. He has, however, seen some fever-chill reactions when patients with hermsii were being treated with Ceftriaxone. “And those weren’t herx?” I asked. He didn’t believe so; rather, he thought that the fever and chills were because Ceftriaxone wasn’t killing the bacteria quickly enough. When he switched those patients to Ertapenem, a stronger antibiotic, the fever and chills went away, and the patients saw improvement in their conditions.

Now here’s what Principles and Practices has to say about herx in patients with Borrelia burgdorferi (Lyme Disease). The reaction occurs during the first 24 hours of therapy, and consists of high fever, a redder rash, and greater pain. Some vasodilatation may also occur. The Herxheimer reaction occurred in approximately 15% of patients. Only 15 percent! That was shocking to read. There were also no reported deaths from Herxheimer reactions during antibiotic therapy for Lyme Disease.

Clearly, the rate of herx reactions in studies did not match my impression from anecdotal accounts from patients, so I asked Dr. W if he could offer any explanation. His hypothesis was that since most B. burgdorferi (Lyme) patients have latent (long-term) infections and not acute (new) infections, they are probably not having true herx reactions. However, since some doctors prescribe a lot of different supplements to be taken while patients are undergoing antibiotic therapy, perhaps some of the symptoms that patients feel are adverse reactions to the supplements. Because supplements are not subject to the same FDA regulation as pharmaceuticals, the companies that manufacture them are not required to prove their safety or effectiveness. Consequently, very little is known about how these products interact with prescription and over-the-counter medications. To read more about supplements and regulation, go here.

Here’s what I take away from all this:

  • Herxheimer reaction is a medical term used to describe a specific set of symptoms in a specific set of patients (those with acute Borrelia infections) which may be life threatening (in the case of very high fever and very low blood pressure), particularly in patients with Borrelia hermsii infections.
  • The term “herx” has been adopted by both the LLMD (Lyme-literate medical doctor) community and the Lyme patient community and has evolved into a generic, non-clinical term that means discomfort or worsening of symptoms that occurs multiple times throughout the course of antibiotic treatment.
  • Just because a patient is experiencing discomfort does not mean he or she is having a true Herxheimer reaction.
  • Contrary to what some doctors say, there is nothing worrisome about a patient who does not have a Herxheimer reaction, as they only occur in 30-40% of B. hermsii patients and 15% of B. burgdorferi patients.
  • Some episodes of high fever and chills during antibiotic therapy might mean that the antibiotic is NOT working well enough. Patients sometimes benefit by being switched from Ceftriaxone to Ertapenem.
  • Because some patients take a number of supplements in addition to antibiotic therapy and none of these are properly regulated by the FDA and studied in clinical trials, their effect on the body is unpredictable. It’s possible that some reactions that patients believe are Herxheimer reactions are actually reactions to other things they are taking.

Ceftriaxone (Rocephin): Is your doctor following directions? 05/16/2012

Posted by thetickthatbitme in Treatment.
Tags: , , , , , , , , , , , , , ,
2 comments

Have you ever stored a frying pan with a plastic handle in your oven and then forgotten it was in there the next time you turned the oven on? If you have, you probably can’t use that frying pan anymore because the handle is melted off. That’s a situation that demonstrates why it’s important to use products the way the manufacturer intended.

Think about how many over-the-counter medications you might have in your medicine cabinet. They all have different purposes, right? Some are for pain, others are for allergies, and others are for cough and cold. You bought each medication for a specific purpose, and it won’t work for other purposes. For example, you wouldn’t take Zyrtec if your back hurts, just like you wouldn’t take Ibuprofen in the hopes that you’ll stop sneezing when you go outside.

ibuprofen

Ibuprofen tablets. (Image via Wikimedia Commons. Credit: Ragesoss)

You also have to follow the correct dosing and timing specified by the manufacturer. If your back ache is going to last for the next 10 hours, and the instructions say you can take two pills every 4 hours, you can’t just take 4 pills now in order to save time. If you’re a daredevil, you’re probably thinking to yourself, “Oh, that’s no big deal. I won’t die,” and you’re right, you probably won’t die from taking 4 Ibuprofen when you’re only supposed to take two. But if you failed to follow the manufacturer’s instructions every time you took Ibuprofen, and you took it every day for months, you would probably be doing some serious damage to your body.

Now let’s think about a prescription antibiotic called Ceftriaxone (or Rocephin). Ceftriaxone is used for IV therapy to treat a variety of infections, including Borrelia burgdorferi (Lyme Disease) and Borrelia hermsii (Tick-borne Relapsing Fever). The drug comes in a powder form, and it has to be dissolved (“reconstituted” is the official term) in a sterile solution before it goes into your IV. By the time most patients see the drug, it has already been reconstituted in solution inside an IV bag by a doctor or pharmacist. This means the patients have never seen the vial that the drug came in, and they certainly haven’t seen the package insert and read the instructions.

So why should you care what’s in the package insert? Isn’t that for your doctor to worry about? Wouldn’t a doctor who has treated hundreds of Borrelia infections know the right way to prepare and use Ceftriaxone?

See if you can answer those questions when you’re finished reading this post.

Storage and Stability Issues with Ceftriaxone

Shelf life. Depending on how it is stored, Ceftriaxone in solution may have anywhere from zero to ten days of shelf-life. There are two main variables that influence the length of shelf-life: what the solution is made of and what container it’s stored in. As you can see from the table below, Ceftriaxone can be reconstituted in a variety of sterile solutions. What’s in the solution determines how it should be stored and for how long. For example, Ceftriaxone in a solution of Dextrose and Sodium Chloride cannot be refrigerated, and it only keeps for 2 days.

Containers. Take a look at the above excerpt from the Rocephin/Ceftriaxone package insert. The only two types of containers it references are glass and PVC. Why? Because those are the only two types of containers in which Roche, the manufacturer, has studied the drug. They don’t know what happens to Ceftriaxone in solution if you store it in a container made of any other material.

So the next question is: Are doctors and pharmacists only storing reconstituted Ceftriaxone in PVC and glass?

Answer: No.

My reaction: Whaaaa?

Okay, with the glass, I’m actually not surprised. I’ve seen a good number of YouTube videos featuring patients doing home infusions, and in none of them did I see any glass containers. But what about PVC? Oh wait, PVC! I know you! PVC is an acronym for polyvinyl chloride, a substance used to make all kinds of things from pipes to IV bags and tubes. The problem with PVC is that it contains phthalates, specifically one called Di-2-ethylhexyl phthalate (DEHP). Exposure to DEHP and other phthalates has been linked to all sorts of health problems, and it has been banned in the manufacture of toys in both the U.S. (2008) and the European Union (1999). More recently, Kaiser Permanente announced that it will no longer buy IV medical equipment made with PVC or DEHP, and other hospitals have followed suit. Maybe that’s because they read this study about how DEHP leached out of PVC bags containing lipid emulsions (a.k.a. liquid nutrition), or this study about how DEHP leeched into saline stored in PVC bags, or any of the other 50+ studies on TOXNET about PVC and infusions.

Dextrose 100 mL

The label from a B.Braun IV bag of Dextrose. Note the “Do not store.” (Image via dailymed.nlm.nih.gov)

Taking these developments into consideration, if you’re doing home infusions with Ceftriaxone, your doctor or pharmacist probably isn’t storing the reconstituted Ceftriaxone in PVC containers—and if s/he is, s/he shouldn’t be! Moreover, since we don’t know anything about the shelf-life of Ceftriaxone in any other types of containers (besides glass), it’s probably not a good idea to store it in non-PVC containers either. What about storing it in IV bags or syringes? I asked Dr. W about this, and he said that these containers are not intended for storage. IV bags even say, “Single use container. When introducing additives, do not store.” Again, there is NO DATA on how well this drug stores in syringes and non-PVC IV bags.

“So what about glass,” you say. “Should I just ask my doctor to put the reconstituted Ceftriaxone in a glass container?” Well, glass is a better choice than PVC or some other container, and some solutions, like Dextrose, are still available in glass bottles, but if those bottles get even one little crack, you’re S.O.L. Another concern is that even when stored correctly for the amount of time allotted by the manufacturer, Ceftriaxone can lose up to 10% of its potency, which means that if you are using drug that was made up yesterday or a week ago, some of the drug that’s going into your system is inactive. I’ve heard reports of stored Ceftriaxone turning yellow after a few days in the fridge. Dr. W explained that this is a very bad sign, because a color change means a chemical change has occurred. (Think about what happens when the bread sitting on your counter turns blue.) I don’t know what the effects of inactive drug going into your system are, but I think ideally, you want the drug to be 100% active, which means you want the drug to be freshly prepared daily, if possible. I know this is a tall order for both patients and doctors, but I think that doctors who really care about treating their patients effectively should consider this approach. Not only does it make the most sense, but it’s also the way the manufacturer intended for the drug to be administered. Read below.

ceftriaxone

Notice how they say that in order to “minimize drug waste,” that is, to keep the drug from going bad, it should be “mixed at bedside just prior to administration.” This means they want your doctor to fix it up right before you get your infusion. Note the use of “rare” in the next sentence. It should be RARE that the drug is not infused right after it’s prepared. Instead, most doctors seem to be making up drug a week in advance and telling patients to pop it in the fridge with last night’s leftover spaghetti. No, don’t eat that hamburger meat that’s been in the fridge for a week, but if you want to infuse that week-old Ceftriaxone solution, go right on ahead.

Drug Delivery Issues with Ceftriaxone

Janet Leigh Pscyho

Janet Leigh in Alfred Hitchcock’s Psycho. (Image via The Guardian. Credit: Allstar/Cinetext)

Here’s where my YouTube favorites list really started to play like a horror movie. (Cue Hitchcock music.) I saw all sorts of scary things in addition to the violation of the don’t-store-in-anything-but-glass rule. I saw a little girl hold her PICC line tube in her mouth while she flushed it with saline. (Yeah, Mom, it’s great that she could do it all by herself, but do you really think that’s be best way to keep the line clean?) I saw a young woman in Australia reconstitute her own Ceftriaxone on her living room coffee table. Most disturbing, I saw patients giving themselves Ceftriaxone through PICC lines using a technique called “IV push.” Why did this scare me? Allow me to explain.

An IV push is when a syringe containing reconstituted drug is hooked up to the PICC line and pushed through in just a few minutes. It’s a method that seems, to me, to be favored by lazy nurses who don’t have 30 minutes to wait around while a home care patient gets a drip. Aside from being a lazy method, is it a dangerous method to use with Ceftriaxone? Of course. Why do you think it scares me so much! To see why it’s dangerous, you have to understand the manufacturer’s instructions for appropriate concentrations of the drug and for the timing of drug delivery.

Concentration concerns. According to the package insert, 40 mg/mL is the maximum concentration allowed for Ceftriaxone. If you are infusing 2 grams Ceftriaxone, you need to dissolve it in at least 50 mL of solution (2 g = 2000 mg; 2000/40 = 50). Last time I checked, 50 mL of solution doesn’t fit in a little syringe. If you use less than 50 mL of solution, you can’t be sure that all of the drug (which is in powder form) dissolves, and that’s bad because you don’t want powder going into your vein. Even if you do manage to dissolve all of the drug in less than 50 mL of solution, there’s no guarantee that it will stay dissolved in that high concentration. Remember, syringes aren’t made for storage, and the drug company hasn’t studied the shelf-life of Ceftriaxone stored in syringes.

Timing concerns. Ceftriaxone is meant to be infused, not injected into your vein. That means it’s supposed to drip slowly. In our fast-paced society, I know it’s tempting to want to speed things up. Some of my fellow patients in the infusion clinic were always trying to speed up their IVs behind the doctor’s back so they could get out of there faster, and when they were caught, they were strongly admonished for two reasons. First, the drug is most effective when infused slowly. Second, infusing a drug too quickly can cause dangerous adverse reactions.

So imagine you’re doing a three-minute IV push through a PICC line. That means you’re putting the drug into your system ten times faster than it’s supposed to go in. What will happen is that you’ll have a very high concentration of the drug in your blood stream, and then you’ll have quick fall-off. This can result in high toxicity if the drug precipitates to your gallbladder or kidneys. The result is that you might experience a gallbladder attack or even kidney failure. What’s worse is that since you are pushing the drug through a PICC line and not through a little vein in your hand, you’re putting the drug into a vein that goes directly to your heart. If it hits your heart too quickly, you could give yourself an arrhythmia or bradycardia.

The bottom line: Any doctor or nurse who wants to give you an IV push with Ceftriaxone clearly hasn’t read and understood the manufacturer’s instructions in the package insert and should not be considered competent to treat you with IV therapy.

So what have we learned today?

  • Many doctors aren’t using Ceftriaxone (Rocephin) according to manufacturer instructions.
  • Ceftriaxone has no proven shelf-life when stored in anything besides PVC and glass.
  • PVC is dangerous and should not be used to store any drug you plan on putting in your body.
  • Glass storage containers can crack and leak.
  • Ceftriaxone MUST be dissolved in AT LEAST 50 mL of solution. Anything less is unstable and unsafe.
  • Ceftriaxone in solution must NOT be stored in IV bags and syringes.
  • Daily prepared Ceftriaxone is the only sure way to get stable and potent drug.
  • Ceftriaxone must be infused over at least 30 minutes in order to be safe and effective.
  • IV push is a dangerous method that poses serious risks to the patient, including complications affecting the gall bladder, kidneys, and heart.

Questions? Concerns? Crazy Ceftriaxone stories? I await your comments.

All IV therapy is the same, right? 05/09/2012

Posted by thetickthatbitme in Treatment, Whole Person.
Tags: , , , , , , ,
2 comments

As you might have noticed, I am quite the internet researcher these days. I’ve been googling around, reading about different people’s experiences with IV therapy, and I have to say, some of the things I’ve seen are downright horrifying to me. To make sense of it all, I started researching the different ways that people can be hooked up to IVs and thinking about this in the context of my own experiences being poked with needles. I admit, I couldn’t figure it all out by myself, so yesterday, I requested an interview with Dr. W and he explained some of the nuances of IV practices to me. The following is my layman’s term translation of what I found out.

There are four main ways to do IV antibiotic therapy, and some methods are more popular than others. I’ll describe a little about each one, and then we’ll compare.

Catheters

hand catheter

Here’s my hand with a catheter in it following spine surgery in 2010. I think they took it out shortly after this because it was getting kind of gross.

One method of IV therapy is to insert a catheter into a vein in the hand or arm. The catheter can then be connected to a bag containing the prepared antibiotic. (If you’ve ever had general anesthesia, you’re probably familiar with this one.) Catheters can be left in up to three days, but after that, they need to be removed to avoid infection. When a catheter is taken out, another one cannot be put back right away in the same place, as this can damage the vein. One problem this poses is that a doctor treating a patient with IV therapy for an extended period of time may run out of places to put the catheter. Having a catheter can also inhibit a patient’s normal activities (like bathing, for example).

PICC line/Intravascular device

A PICC line (PICC stands for peripherally inserted central catheter) is inserted into the cephalic vein in the arm, which runs up into the subclavian vein. This line can be left in the vein for weeks at a time, so it is often used for long-term antibiotic treatment because it is more convenient (for the doctor) than inserting a catheter every 3 days. On the downside, having a PICC line inserted can cost thousands of dollars and may or may not be covered by insurance. The dressing needs to be changed weekly by a nurse, which is another added expense. If any complications arise, this may mean time spent in the hospital emergency room.

PICC line

This is what a PICC line in someone’s arm looks like. The line has a bandage/dressing over it to keep it clean. Usually, you have to wear a sleeve over it to protect it and keep it from catching on stuff. (Image via ucdmc.ucdavis.edu)

One patient I know who was getting treated with vancomycin through a PICC line (for a non-tick-borne infection; vancomycin can only be done through a PICC line because of the nature of the drug) developed a severe allergic reaction to the adhesive that was used to tape the line. It looked like she had burns on her arm! Other people develop serious infections. How common is infection with PICC lines? In a study of 200 patients being treated with antibiotic therapy via PICC line, 15 patients had complications related to the PICC line itself, and six suspected line infections were reported. Now, I don’t know about you, but I wouldn’t want to be one of those six people, especially if I were paying thousands of dollars out-of-pocket for this treatment. So why do doctors who treat TBIDs like to use PICC lines? A PICC line usually means that a patient only needs to be seen by the doctor every week or so, so it is certainly less work for the doctor. In between doctor visits, a nurse is supposed to assist the patient with administering the medication. I’ve seen a lot of patient testimonials online, however, that indicate that in between doctor visits, patients are basically left to their own devices. I shudder to think of what happens to these patients if they have adverse reactions to the antibiotics or if they contaminate their lines while administering their own treatments.

Implantable Portacath

This method is not very common with IV antibiotic treatment, but it does exist, so I am mentioning it. A portacath is surgically inserted under the skin into the subclavian vein (which is a big vein) in the upper chest or the arm. The port has a silicone bubble called a septum, where the needle is inserted to administer the drug. The risk of infection with a portacath is purportedly lower than with a PICC line or catheter. The downside would be having to undergo the surgery to implant the port, as well as the surgery to remove it. Though it’s considered a minor surgery, I’m sure it’s not cheap, especially if it’s not deemed medically necessary by your insurance company.

Daily (Butterfly) Needle Insertion

This is the method with which I am most familiar, as it is how I was treated for 42 days. My doctor used a 23 gauge butterfly needle (which is an itty-bitty needle originally designed to be used in babies’ heads) and inserted it into a vein on the back of my hand. The needle was connected by a line to a bag containing the antibiotic, which was prepared fresh daily in a sterile hood. I sat in a comfy chair in the doctor’s office for about 45 minutes each day with the itty-bitty needle in my hand.

Butterfly_needle

This, in my humble opinion, is the best (read: least painful) kind of needle. (Image via Wikipedia)

This method has several advantages. First, I didn’t have to worry about purchasing and storing the drug or any equipment. Everything was provided at my doctor’s office and included in the cost of my visit. I also didn’t have to worry about ‘doing it wrong’ because the doctor did all the work. All I had to do was keep my hand relatively still for 45 minutes. Aside from this time spent in the clinic, this drug delivery method didn’t inhibit my activities because I wasn’t walking around with a needle stuck in my vein. I could shower normally. I could go to the swimming pool. I could wear long-sleeved shirts and jewelry. I also didn’t get a scar like I did from the catheter in my hand after my back surgery. For comparison’s sake, I was curious about the risk of infection with the needle-in-hand method, so I asked Dr. W about it yesterday. He said that in the past year at his clinic, he has inserted more than 4,000 needles for IV infusions, and there have been zero infections.

hands

Can you tell which hand got stuck 40 days in a row?

Okay, so let’s recap the pros and cons of each method.

Method

Pros

Cons

Catheter

  • Can do treatment at home with a nurse
  • Has to be changed every 3 days
  • Risk of infection
  • Leaves a scar

PICC line

  • Can do treatment at home with a nurse
  • Only have to see doctor weekly

 

  • Risk of infection
  • Risk of allergic reaction to bandage adhesive
  • Patient may have to self-administer
  • Leaves a scar
  • Expensive

Portacath

  • Can do treatment at home with a nurse
  • Has to be surgically implanted and removed
  • Expensive

Butterfly   needle

  • Doesn’t leave a scar
  • Lower risk of infection
  • No prep work for patient
  • Have to visit doctor every day
  • Have to get stuck with a needle every day

What Is Prophylaxis, and Does It Work on Tick Bites? 04/24/2012

Posted by thetickthatbitme in Peer-Reviewed, Tick-Lit, Treatment.
Tags: , , , , , , , , , , , , , , ,
3 comments

This is NOT what I mean when I say “Tick-Lit.” Image via Wikipedia.

Today is Tuesday, and I’ve made an executive decision that from now on, every Tuesday I will be covering peer-reviewed research related to tick-borne infections. We in academia call this a “review of the literature,” even though it’s not what normal people think of as literature–no Shakespeare, just dry prose littered with scientific jargon–which is why most people don’t want to read it. Lucky for you, I am a super-nerd and enjoy this kind of reading, at least when it’s about TBIDs (tick-borne infectious diseases). I’ve even come up with an affectionate name for it: “tick-lit”. So every Tuesday from here on out will be Tick-Lit Tuesday, the day on which I read the literature so you don’t have to. Enjoy!

Today’s question: Does prophylaxis work for tick bites?

While a lot of patients with tick-borne infections don’t remember a tick or a tick bite (which is why it takes so long to get diagnosed), there are also people who do notice being bitten and go to a doctor right away because they are concerned about TBIDs. So what happens to these patients?

I’ve heard stories from patients with TBIDs, particularly patients with Borrelia burgdorferi (Lyme) and Borrelia hermsii (Tick-borne Relapsing Fever), about how when they went to a doctor within 48 hours of being bitten, they were told “Oh, we don’t have Lyme in this state, so you don’t have to worry.” Following this logic, ticks carrying Borrelia burgdorferi must be so smart that 1) they know which bacteria they are carrying; 2) they know which state they are in; and 3) they have the decency to respect state lines. I can really imagine a deer tick saying, “Oh, no, I can’t go over there. I’m a California tick. They don’t let dirty ticks like me out of California.” I suppose some doctors imagine that there is some kind of tick parole system that keeps them from traveling anywhere where the CDC and state health departments have not documented them to exist.

Some of these delusional doctors probably can’t be reasoned with, but what about doctors who want to do the right thing? What should they do when a patient comes to them within 48 hours of a tick bite?

Let’s take a look at the research.

One of my favorite tick-lit studies is one that was published in the New England Journal of Medicine way back in July 2006. The study took place in Israel, where Ornithodoros tholozani ticks infect people with a bacterium called Borrelia persica. Borrelia persica, like Borrelia hermsii, causes Tick Borne Relapsing Fever (TBRF). You can think of Borrelia persica as B. hermsii‘s brother. The researchers wanted to find out whether prophylaxing soldiers (giving them antibiotics right away) who had recently been bitten by ticks would prevent the infection from spreading and causing the symptoms of TBRF.

Here’s how they did it (Methods). They studied 93 healthy soldiers with suspected tick bites. Some of these people had evidence of a tick bite (like a rash) and others didn’t, but had been in the same places that the people with bites had, so they had the same risk of exposure. They randomly picked half of the soldiers who would receive antibiotics (Doxycycline for 5 days), and the other half would receive a placebo (which means they would think that they were taking antibiotics, but they were really taking a sugar pill). The study was double-blind, which means that neither the soldiers nor the researchers knew which patients were given the real antibiotics at the time of the study. This makes the study more credible.

Here’s what happened (Results):

All 10 cases of TBRF identified by a positive blood smear were in the placebo group of subjects with signs of a tick bite (P<0.001). These findings suggested a 100 percent efficacy of preemptive treatment (95 percent confidence interval, 46 to 100 percent). PCR for the borrelia glpQ gene was negative at baseline for all subjects and subsequently positive in all subjects with fever and a positive blood smear. Seroconversion was detected in eight of nine cases of TBRF. PCR and serum samples were negative for all of the other subjects tested. No major treatment-associated adverse effects were identified.

In English, this means that 10 of the 46 people who did not get treated with antibiotics got sick with TBRF, and their blood tests showed that they were making antibodies to Borrelia persica. (Their PCR test (a DNA test) was also positive for the borrelia gene.) However, none of the 47 people who were treated with antibiotics developed any symptoms of TBRF.  When their blood was tested, it was negative for antibodies to Borrelia persica and their PCR was negative for the borrelia gene. That means that prophylaxing with Doxycycline prevented 100% of cases of TBRF (Borrelia perica infection).

Now you may say to yourself, “Oh, that’s only one study. The sample size was fairly small, and it’s not necessarily generalizable to all Borrelia infections.” At least, that’s what I imagined you (or your skeptical primary doctor) saying as I was rooting around on PubMed. Then I dug up this study from *gasp* 2001: “Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite” (!!!)

The 2001 study was conducted in an area of  New York with a high incidence of Borrelia burgdorferi (Lyme) infection. Like the Israeli study, it was also a randomized, double-blind, placebo-controlled trial, but unlike the Israeli study, they only gave patients a single dose of doxycycline. The results? One out of the 235 people treated with doxycycline got Erythema migrans, the bull’s-eye rash that indicates a Borrelia burgdorferi infection. In the placebo group (people who didn’t get antibiotics) 8 out of 235 developed the rash and tested positive for infection. Their conclusion: a single dose of doxycycline can prevent Lyme if given within 72 hours of the tick bite.

If these two studies are not convincing or current enough, the doctors from the Israeli Medical Corps published another study in 2010. First, they inform us that “Since 2004, the Israel Defence Forces (IDF) has mandated the prophylaxis of tick-bitten subjects with a five-day doxycycline course.” (That has me thinking the Israelis are pretty smart.) Just to make sure they were doing the right thing, in this study, they decided to analyze all the tick bite and TBRF cases in their records from 2004-2007.

Here’s what they say:

Of those screened, 128 (15.7%) had tick-bite and were intended for prophylaxis, of which four TBRF cases occurred-3.13% attack rate compared with an expected rate of 38.4% in these bitten individuals without prophylaxis (RR = 0.08, number needed to treat = 3). In all cases in which screening and prophylaxis were provided within 48 h of tick bite, complete prevention of TBRF was achieved. No cases of Jarisch-Herxheimer reaction (JHR) was recorded.

What does that mean? Only 4 of the 128 people who were treated with doxycycline developed TBRF, a rate of 3.13%. The expected attack rate was more than 10 times that, 38 percent, so without the doxycycline policy, it would likely have been 48 people with TBRF instead of 4. One more thing. There was a reason those four people got sick: they were given the doxycycline later than 48 hours after being bitten!

The Big Picture

How does this research affect you as a patient who has been bitten by a tick and contracted an infection or as a patient who could potentially be bitten by a tick in the future?

The research shows us that, if treated within 48 hours with 5 days of Doxycycline, most–if not all–cases of Borrelia infection and resulting symptoms can be prevented. If you could get an appointment with an infectious disease specialist who recognizes this fact within 48 hours of being bitten, you could probably avoid a lot of potential suffering. The problem is that to see a specialist, you usually need to be referred by your primary care doctor. Some of us can’t even get an appointment to see our primary care doctors within 48 hours, and some of the primary care doctors don’t even know how to spell Borrelia (no offense to primary care doctors who can spell it), let alone diagnose it with a simple blood test. And most of them certainly don’t know that the best thing to do would be to prophylax you with doxycycline.

Let’s put the numbers in perspective. In 2010, the CDC reported over 20,000 confirmed cases of Lyme (Borrelia burgdorferi) and an additional 10,000 probable cases. The CDC’s number of cases (which I believe, as with burgdorferi, are severely underreported) for 1990-2011 for Borrelia hermsii (TBRF) is 483. If 35% of those Borrelia cases had been prevented with prophylaxis, that would mean 10,669 fewer sick people.

So what can you do? Here’s a list of my suggestions:

  1. If you’ve been diagnosed with a tick-borne illness, make sure that every one of your doctors knows it, even the ones you don’t like and the ones you don’t go to very often. All doctors, not just infectious disease doctors, need to be aware of how prevalent these infections are.
  2. If you are bitten by a tick, insist that your primary care doctor prophylax you with doxycycline for five days. You can even print out these PubMed article abstracts and bring them to your appointment. Many doctors can be reasoned with, and if they won’t listen to you, sometimes they’ll listen to the New England Journal of Medicine.
  3. If you are bitten by a tick, try your best to save the little beast. You can store it in an old prescription bottle or a jar. (Labs like Quest Diagnostics also distribute collection containers to some doctors’ offices.) Inform your doctor that you are brining the tick to your appointment and you want to have it tested. Having ticks tested helps with more accurate CDC reporting about which areas have infected ticks.
  4. Getting the tick tested doesn’t mean that you don’t need to get tested. The tick testing takes longer than the people testing. On the off-chance that prophylaxis doesn’t work for you, you’ll need to get more treatment if you test positive.
  5. As always, the best way not to get a tick bite is not to be in areas where ticks live and not to be around animals that carry ticks. Follow tick-exposure prevention best practices. This includes keeping your home and yard free of mice and rats (on which the hermsii-carrying ticks feed) as well as deer (on which the burgdorferi-carying ticks feed).

That’s all for Tick-Lit Tuesday. Stay informed and stay well!

My Story 04/18/2012

Posted by thetickthatbitme in Diagnosis, meta-blog, Treatment.
Tags: , , , , , , , , , , , ,
5 comments

Like many people who have suffered from tick-borne illnesses, I struggled with my symptoms for a long time before I got a diagnosis and effective treatment. At the time when I hypothesize I was infected—I say ‘hypothesize’ because I never discovered a tick or a tick bite, I never had a rash, and I never had a fever—I was already dealing with a number of medical problems that had begun in my early twenties. I’ll save all the gory details for another time, but my laundry list included irritable bowel syndrome (later diagnosed as an Entamoeba histolytica infection and treated with Metronidazole), a dysfunctional bladder (still unresolved), a spinal deformity (for which I underwent major surgery in 2010), and a ptosis in my right eye.

In the summer of 2009 I had finished graduate school and started my first professional teaching job. I’d been suffering from bladder and bowel issues for several years and had begun seeing an urologist and a neurologist who were trying to figure out if my problems were neurological, and if so, what to do about them. I spent the Fourth of July weekend in Yosemite National Park on a girls’ retreat with some friends from high school. We stayed in a yurt—with bunk beds—and hiked two or three trails a day for several days. I remember having a head cold that I picked up on the plane ride from Long Beach to Oakland and blowing my nose all night. I remember being eaten alive by mosquitoes one morning, despite having worn bug spray. I don’t remember any ticks, but I’m not much of an outdoor girl, and at the time, my tick-awareness was nonexistent. The kind of tick that bit me was likely a soft-bodied tick, the kind that fall off when they’re done, so it’s understandable that I never saw it. If there was a fever or a rash, I didn’t notice them because I was already sick and swollen with mosquito bites.

This is when I believe I was bitten, but there is really no way to know. According to CDC reports, the area of Southern California in which I live is known to be infested with ticks that carry Borrelia hermsii. I could have been bitten while walking my dog or sitting at a picnic table in the park.

After my Yosemite trip, I returned to LA and the neurologist, who referred me to a neurosurgeon. The surgeon, after ordering MRIs, concluded that I was cursed with a spinal column that was too long for my spinal cord, which was causing the cord to stretch like a rubber band and causing nerve damage that might account for the bladder and bowel problems. After much convincing (and much freaking out), I decided to undergo surgery to shorten my spine the following summer. At the time, I was under a lot of stress, trying to balance work, my teaching credential program, my relationship with my boyfriend, and routine doctor visits. If I was exhausted, I attributed it to this balancing act, not to the infection that was, unbeknownst to me, festering in my bloodstream.

The spine surgery was traumatic–nine hours face-down on the table, nine days in the hospital–but successful. My mobility was impaired for the first six months. I wore a hard brace until December and a corset until February. I was able to drive (and teach again) by September, and my life got back into full swing with student teaching, paid teaching, and two other part-time jobs. When I wasn’t working, I spent most of my time lying on my back in bed. I got an iPhone so I could be more productive in that position, and most of the time, friends who wanted to hang out came to me. After the first six months, when my surgeon said–according to imaging–that the bone had completely healed, I wondered why I was still so tired and achey all the time. I was having trouble getting up in the mornings, and I wasn’t making expected progress in cutting back on my pain medication. Maybe it was just stress, I reasoned. Maybe I was depressed. After all, at 25, my life hadn’t exactly panned out the way I’d planned it. Maybe it was part laziness. That was the conclusion of one of my mentor teachers. I had no real framework for understanding what was happening to me, so I just tried to push through it.

A little more than a year following my surgery, I went up to my parents’ house for a summer visit. I’d had the second of two eye surgeries in May to correct the ptosis, which so far has stuck–no more ptosis. (The surgeon attributed my ptosis to having worn hard contact lenses as a teenager.) School was out, and my back was doing all right, but I felt perpetually exhausted. I helped out at my dad’s medical practice for a week, and he ordered some blood tests for me. I didn’t find out the results until I got home to LA. Three little surprises: 1) Entamoeba histolytica, my parasitic souvenir from my time studying abroad in China; 2) Borrelia hermsii, from a tick I’d never seen evidence of; and 3) Anaplasma phagocytophilum, another tick-borne infection.

We treated the Entamoeba histolytica with a course of Metronidazole, an oral antibiotic and the Anaplasma phagocytophilum with three weeks of Doxycycline. The treatment for Borrelia hermsii was 42 days of intravenous Ceftriaxone therapy.

The treatment of tick-borne infections with IV antibiotics is controversial because research, professional guidelines, and doctors’ practices based on their experiences treating these diseases often contradict each other.

The CDC does not have specific guidelines for the treatment of Tick-borne Relapsing Fever (TBRF), the name of the illness caused by a Borrelia hermsii infection. Here’s what the CDC has to say about treatment procedures: “Experts generally recommend tetracycline 500 mg every 6 hours for 10 days as the preferred oral regimen for adults. Erythromycin, 500 mg (or 12.5 mg/kg) every 6 hours for 10 days is an effective alternative when tetracyclines are contraindicated. Parenteral therapy with ceftriaxone 2 grams per day for 10-14 days is preferred for patients with central nervous system involvement.”

You’ll notice that they only recommend one to two weeks of antibiotic therapy, in contrast to the six weeks of therapy that I received.

The Infectious Disease Society of America doesn’t have treatment guidelines for Borrelia hermsii, but they have guidelines for its Lyme Disease-causing cousin, Borrelia burgdorferi. They recommend treating what they term “Lyme arthritis” with Doxycycline, an oral antibiotic, for 28 days. Treatment suggested for “Late neurologic Lyme disease” is intravenous Ceftriaxone for 2-4 weeks.

Many of the patients that I met in clinic had tried oral antibiotics—sometimes for months at a time—with less than stellar results. Others had been given intravenous antibiotics on an inconsistent basis (for example, Monday through Friday, but not on the weekends). The patients I met who got better were ones who had had a minimum of 28 days of IV antibiotic therapy.

I can’t prove anyone wrong or right, and I am most certainly biased as a patient and a doctor’s daughter, but I can point you to facts and information that may help you in your own journey to health. So here is an abbreviated description of my experience being treated for Borrelia hermsii by an experienced infectious disease specialist:

I came to the clinic every day for 42 consecutive days, except for the day that I had gallbladder surgery. I know you must be thinking the Ceftriaxone caused my gall stones, but the stones were revealed to me by an ultrasound that was done in LA two weeks before I started treatment; they were probably brought on by a combination of heredity–my mother had hers out–and my weight loss following back surgery.

The doctor prepared the drug in a sterile hood. He used a butterfly needle (which is very small as needles go) in the top of my hand. It wasn’t very painful for me, and I’m not squeamish, so the process was not traumatic. Each day, the drug infused over about 45 minutes. The doctor said this method was better than an injection because it lowered the risk of adverse reaction. If I’d had any problems, they could have switched me to saline quickly.

The first two weeks were the most difficult. I was still extremely fatigued, and I began getting more arthralgias (aches and pains) in my wrists, hips, knees, and ankles. It was explained to me that Borrelia like to “hide” in joints, and my pain probably meant that the bacteria were dying. Knowing this, I could reluctantly accept the pain as a good sign.

In week three, I had my gallbladder out. My surgeon was very talented and did the laproscopic procedure, so it only took a few days for me to get back to normal. They gave me Ceftriaxone through IV in recovery, so I didn’t technically skip my infusion that day.

At the end of week four, I started to notice that I had more energy. I was working during the day, helping my dad, then coming home at night and doing my own work (I do freelance editing when I’m not teaching.). It was the first time in more than a year that I felt truly alert and productive.

Weeks five and six went by more quickly. I found myself laughing more, and even singing in the clinic. It helped that there was a piano there. For the first time, my back felt almost as good as it had before my surgery. And my mind…well, I’m sure you can tell how sharp I am based on my excellent writing skills.

For those who believe in more holistic treatment methods, I’ll note that a few other components played a role in my recovery:

1. Exercise: I joined the small pool where my mom takes arthritis water aerobics classes and went with her two to three times per week. The warm water made my joints feel better, and the exercises strengthened my muscles and improved my balance. Because the class is zero impact, I didn’t get sore like I would from walking the dog or playing a sport. The class I took was designed by the Arthritis Foundation and is offered at hundreds of facilities around the country. Though you could say I had a reactive arthritis, you don’t have to have arthritis to take the class. You do, however, need a doctor’s approval.

2. Diet: My doctor recommended a diet high in choline. Choline is an essential nutrient that is classified as the newest member of the B Vitamin family. It’s important because it is required for the proper transmission of nerve impulses from the brain through the central nervous system. You can find information about high-choline diets here.

3. Fun: During the six weeks of my treatment, I tried to find ways to relax and fun things to do. I attended a musical and several movies with friends. I read some “guilty pleasure” novels (you know, the kind with romance, vampires, etc.). I took walks on the beach with my family. I also benefited from the relaxed atmosphere of the infusion center. The doctor invited a piano player to entertain patients, and a few patients, including myself and a former opera singer, often sang along. There were a handful of regulars, like me, “doing time” for 28 days or more, and they became my friends. We swapped stories about doctors, work, and life. We gave each other nicknames and told each other jokes. My six weeks of treatment were filled with song and laughter. Could that have affected my prognosis? If I were a betting kind of woman, I’d bet on it.

I am still a work in progress. I’m back home in LA and feeling better than I’ve felt in a long time, but I’m not done with doctors. I’m determined to stay on top of everything from now on. Never again will I let one discouraging doctor visit interfere with my care.

I invite you to stay tuned and learn with me as I gather articles, resources, and stories from others.

%d bloggers like this: